
Chapter 6

Genomic meta-analysis
and information
integration

Research synnthesis (a.k.a. meta-analysis) has a long history in the ap-
plications of medical research and social science (e.g. education and
psychology). Multiple studies investigating a similar research hypoth-
esis may have been published in the literature and data are available in
public domain. Each study has small sample size and generates weak
statistical conclusion. Integrating information in the studies can poten-
tially increase statistical power and generate a more consensus conclusion.
In genetic and genomic data analysis, meta-analysis methods have been
extended and applied for combinined linkage analyses, genome-wide asso-
ciation studies (GWAS) and microarray studies (Guerra and Goldstein,
2010; Tseng et al., 2012; Begum et al., 2012). As the technology and
prevalence of high-throughput genomic experiments continue to grow,
information integration and meta-analysis will undoubtedly gain popu-
larity in genomic research. In this chapter, we introduce some basics of
classical meta-analysis and then overview some genomic meta-analysis
examples.
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6.1 Methods for univariate meta-analysis

Traditional meta-analysis methods have two major categories for infor-
mation integration: combine effect sizes and combine p-values. We will
briefly introduce methods in both categories and discuss their pros and
cons.

6.1.1 Combine effect sizes

Statistics to describe effect size

Depending on the data structure and biological hypothesis behind, dif-
ferent statistics can be used to describe the effect size within a study. To
perform research synthesis, we need to select an adequate effect size to
combine information across studies.

Raw mean difference (continuous observation) Suppose two groups of ob-
servations are available and the question is to compare their difference.
A simple statistic is to use raw mean difference: D = Ȳ1 − Ȳ2. One can
assume equal standard deviation of the two groups and caculate a pooled

variance V ar(D) ≈ n1+n2

n1·n2
·S2, where S2 =

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2 and S1 and
S2 are the sample variances of group 1 and 2. If we allow the standard
deviations of two groups to be unequal, the variance can be estimated as

V ar(D) ≈ S2
1

n1
+

S2
2

n2
.

Standardized mean difference (continuous observation) The raw mean dif-
ference D does not consider variation of each group. A standardized mean
difference is often preferred. An intuitive and popular standardized mean
difference is Cohen’s d: d = Ȳ1−Ȳ2

S , where pooled estimate of S often used.

It can be shown that V ar(d) ≈ n1+n2

n1n2
+ d2

2(n1+n2) . Note that the first term

describes uncertainty of Ȳ1−Ȳ2 and the second term describes uncertainty
of S.
Cohen’s d is known to be slightly biased to overestimate the true parame-
ter when sample size is small. The Hedge’s d provides a simple correction:
dHedge = (1 − 3

4·df−1 ) · d, where df = n1 + n2 = 2. The variance can be

calculated as V ar(dHedge) = (1− 3
4·df−1 )2 · V ar(d).

Correlation (continuous or binary observation) The sample (Pearson) cor-

relation coefficient r is often used. It can be shown that V ar(r) ≈ (1−r2)2

n−1 .
Since the variance of r is too dependent on r itself (e.g. V ar(r) ≈ 0 when r
close to 1), r is normally not used for research synthesis. If the underlying

variables have a bivariate normal distribution, then t = r
√

n−2
1−r2 ∼ tn−2
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under the null hypothesis (i.e. zero correlation). A third popular choice
is Fisher’s z-transformation: z = 0.5 · log( 1+r

1−r ). It can be shown that

z ∼ N(tanh−1(r), 1/(n− 3)).

log odds ratio (binary observation) When the observations are binary, a
2 × 2 table is established for each study with observations n11, n12, n21

and n22. Log odds ratio is often used as the effect size to combine:
log(o) = log(n11·n22

n12·n21
). The asymptotic variance when sample size large

can be calculated: V ar(log(o)) = 1
n11

+ 1
n12

+ 1
n21

+ 1
n22

.

Converting effect sizes from one to another

In research synthesis, it is common that different studies adopt different
study designs and different reporting measure (effect sizes). It is im-
portant to adequately convert to comparable effect sizes before research
synthesis. Below we describe methods to convert between standardized
mean difference and log odds ratio and between standardized mean dif-
ference and correlation. (see p. 231 of Cooper et al., 2009)

Converting between d and log(o) It can be shown that log(o) ≈ πd√
3

and

V ar(log(o)) ≈ π2

3 V ar(d). Conversely, d =
√

3
π log(o) and V ar(d) =

3
π2V ar(log(o)).

Converting between d and r It can be shown that r ≈ d√
d2+a

, where

a = (n1+n2)2

n1n2
and V ar(r) ≈ a2

(d2+a)3V ar(d). When n1 = n2, a = 4

and V ar(r) ≈ 16
(d2+4)3V ar(d). Conversely, d = 2r√

1−r2 and V ar(d) =
4

(1−r2)3V ar(r).

Fixed effects model and random effects model

Consider the example of Table 14.1 (p259 of Cooper et al., 2009). How
to combine correlation (or odds ratio) across studies?
Fixed effects model Suppose the observed effect sizes Ti has the under-
lying true population effect size θi and variance vi (i.e. Ti = θi + εi,
var(εi) = vi). In practice, Ti and estimate of vi can be obtained from
single study analysis of study i. Fixed effects model assumes that θ1 =
θ2 = · · · = θk = θ. An weighted estimation of θ can be obtained

by T̄ =
∑K

i=1 wiTi∑K
i=1 wi

. To choose the weights wi, it can be shown that

wi = 1/vi minimizes the varaiance of T̄ (Exercise 2). Consequently,
V ar(T̄ ) = 1∑K

i=1(1/vi)
. To draw conclusion on θ, we may perform the

hypothesis testing H0 : θ = 0 versus HA : θ 6= 0 and apply the statistic
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z = |T̄ |√
V ar(T̄ )

. When K is large, z is asymptotically a standard normal

distribution.

To perform fixed effects model, it is important to test whether the as-
sumptioin θ1 = θ2 = · · · = θk = θ is true or not. Such a homogeneity test

can be done using the Q statistic: Q =
∑K
i=1

(Ti−T̄ )2

vi
=

∑K
i=1 wi(Ti−T̄ )2.

Under null hypothesis that the effect sizes are equal, Q follows chi-
squared distribution with degree of freedom K-1 asymptotically. The

index I2 = max(0, Q−(K−1)
Q ) is often used to quantify degree of hetero-

geneity. When I2 < 25%, it is considered small heterogeneity. When
25% ≤ I2 < 50%, it is considered medium heterogeneity and 50% ≤ I2

means large heterogeneity.
Random effects model The assumption of fixed effects model is often vi-
olated in practice. There may be many factors in the studies that can
affect the effect sizes and make them uncomparable. For example, one
study may apply a daily dose of 10mg of a given drug (or vitamin) while
another study may apply 30mg. Other factors such as demographic vari-
ables (such as age, gender and race) or survey methods can also have
impact on the effect sizes. The random effects model assumes that the
underlying population effects sizes θi can be non-eqaual. They come from
one underlying true effect size θ but with added study-specific variabil-
ity σ2

θ . The model can be described as: Ti = θi + εi, V ar(εi) = vi and
θi = θ + δi, V ar(δi) = σ2

θ . As a result, V ar(Ti) = σ2
θ + vi.

Given the model, the question is how to estimate the variance of random

effects σ2
θ? In the first approach, one can consider s2(T ) =

∑K
i=1

(Ti−T̄ )2)
K−1 .

We can show that E(s2(T )) = σ2
θ + 1

K

∑K
i=1 σ

2(Ti|θi). As a result, we

can estimate the random effect variance by σ̂θ
2 = s2(T ) − 1

K

∑K
i=1 vi.

This estimator is, however, problematic. It can obtain negative estima-
tion even when the homogeneity statistic Q rejects null hypothesis. A

better alternative comes from Q =
∑K
i=1

(Ti−T̄ )2

vi
. We can show that

E(Q) = cσ2
θ + (K − 1), where c =

∑K
i=1 wi −

∑
w2

i∑
wi

. The variance of

random effects is estimated as σ̂θ
2 = Q−(K−1)

c . If Q rejects the null hy-

pothesis of homogeneity test, Q > K − 1 and σ̂θ
2 > 0. For more details,

refer to Cooper et al. (2009).

6.1.2 Combine p-values

Combining effect sizes are statistically efficient if the estimate of effect
size is the goal and data fit well with the parametric model. In many
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situations, estimation of effect size is not possible (e.g. survival or time
series outcome is considered rather than two-sample comparison) and
combining p-values provide a more flexible choice. This is especially true
in many genomic meta-analysis. Below we introduce a few classical as
well as recently developed methods for combining p-values, many of which
have been widely used in genomic meta-analysis.

Evidence aggregation methods

In the evidence aggregation methods below, we combine p-values p1, · · · , pK
from K studies. The p-values are transformed into an evidence score and
the evidences scores of multiples studies are summed as the test statistic.

Fisher’s method Fisher’s method (Fisher, 1948) sums up the log-transformed

p-values: TFisher = −2
∑K
k=1 log(pk). Smaller p-values contributes larger

score to the Fisher’s statistic. Under the null hypothesis assuming that
the studies are independent and the statistical models to assess the p-
values are correct, TFisher follows a chi-squared distribution with degree
of freedom 2K.

Adaptively weighted Fisher’s method One potential problem of Fisher’s
method is that an extremely small p-value can dominantly contribute to
the large Fisher score and claim statistical significance. This cannot be
distinguished with situations when marginal p-values from many studies
are combined. For example, the Fisher’s statistic can not distinguish
from combining −→p (1) = (p1, p2, p3, p4) = (0.0001, 1, 1, 1) and −→p (2) =
(p1, p2, p3, p4) = (0.1, 0.1, 0.1, 0.1). In both cases, TFisher = 18.42 that
generates p=0.018. Li and Tseng (2011) proposed an adaptively weighted
(AW) modification for Fisher’s method to solve the problem. The AW

method considers T̃ (w1, · · · , wK) = −2
∑K
k=1 wk · log(pk), where wk are

weights selected from either 0 or 1. Denote by p(T̃ (w1, · · · , wK)) the
p-value of the statistic when weights (w1, · · · , wK) are given and the
optimal weight is selected as

(ŵ1, · · · , ŵK) = arg min
{all possible 0-1 weights}

p(T̃ (w1, · · · , wK)).

The AW statistic is defined as

TAW = p(T̃ (ŵ1, · · · , ŵK)) = min
{all possible 0-1 weights}

p(T̃ (w1, · · · , wK))

= min
{all possible 0-1 weights}

1− Fχ2(2
∑
wk)(−2

∑
wk · log(pk)).

(6.1)
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Intuitively, the 0-1 weights of ŵ1, · · · , ŵK indicate the subset of studies
that contributes to the statistical significance of the meta-analysis. For
example, the estimated weights for −→p (1) will generate (ŵ1, · · · , ŵ4) =
(1, 0, 0, 0) and that of −→p (2) will be (ŵ1, · · · , ŵ4) = (1, 1, 1, 1).

The adaptive weighting method considers all combinatorial subsets
of studies and finds the best subest to describe the meta-analysis con-
tribution. This concept has received increasing attention and has been
modified for fixed effects model for GWAS meta-analysis using frequen-
tist (Bhattacharjee et al., 2012) or Bayesian approaches (Han and Askin,
2012). Section 6.2.2 discusses further the statistical properties of AW-
Fisher. Conceptually, the AW concept can be applied to methods other
than Fisher (e.g. AW-FEM, AW-Stouffer, etc).

?? inference: closed form solution for null distribution or permutation.

Stouffer’s method Stouffer’s method (Stouffer et al, 1949) adopts a dif-

ferent p-value transformation: TStouffer = − 1√
K

∑K
k=1 Φ−1(pk), where

Φ(·) is the cumulative distribution function of a standard normal distri-
bution. Similar to Fisher’s statistic, smaller p-values contributes more
to the score. Under the null hypothesis, TStouffer ∼ N(0, 1). Note
that if pk’s are obtained from two-sided tests, only the right-side re-
jection region for TStouffer should be used. That is, the p-value for
Stouffer’s score is calculated as p(TStouffer) = 1 − Φ(TStouffer). But
if pk’s are from one-sided tests (e.g. pk ≈ 0 means significant up-
regulation and pk ≈ 1 means significant down-regulation for a given gene),
both sides of rejection regions should be considered: p(TStouffer) =
2 ·min{Φ(TStouffer), 1−Φ(TStouffer)}. In this case, Stouffer automati-
cally detects genes with concordant DE direction across studies (see Sec-
tion 6.2.3).

Vote counting method The vote counting method counts the number of
studies that have p-values smaller than a threshold α (e.g. α = 0.05):

TV C =
∑K
k=1 1{pk<α}. Denote by π = E(TV C)/K. Binomial test can be

used to test H0 : π = π0 vs HA : π > π0 for a given π0 (e.g. π0=0.5). The
vote counting method has been found powerless asymptotically when the
effect size in each study is moderate (Hedges and Olkins, 1980).

Other methods of this category Other transformations, including logit (Lan-
caster, 1961) and inverse chi-square transformation with varying degrees
of freedom (George, 1977), have also been proposed. Different weights
or variations of Fishers statistic have also been considered. Good (1955)
suggested using unequal weights for individual studies in which weights
are determined by subject experts. Olkin and Saner (2001) have proposed
a trimmed version of Fishers statistic to remove the potential effects of
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aberrant extremes. For comprehensive reviews and comparisons of vari-
ous meta-analysis approaches, see Hedges and Olkin (1985) and Cousins
(2007).

Order statistics methods

Another category of p-value combination method is to use the order
statistic of the observed p-valued as the test statistic.

maximum p-value (maxP) The maxP method takes the maximum p-

value of all studies as the test statistic: TmaxP = max1≤k≤K pk. Un-
der null hypothesis, TmaxP follows a beta distribution with parameters
K and 1. Intuitively, maxP method requires all studies to have small
p-values to reject the null hypothesis.

minimum p-value (minP) In contrast to maxP, the minP method takes

the minimum p-value of all studies as the test statistic: TminP = min1≤k≤K pk.
Under null hypothesis, TminP follows a beta distribution with parame-
ters 1 and K. Intuitively, minP method can reject the null hypothesis if
a small enough p-value is obtained from any of the K studdies.

rth order p-value (rOP) The rOP method takes the order statistic as

the test statistic: T rOP = p(r), where p(1), · · · , pK are the sorted p-
values.Under the null hypothesis, T rOP follows a beta distribution with
parameter r and K − r + 1. The minP and maxP methods are special
cases of rOP when r=1 and K, respectively. The rOP statistic is shown
to be an inverse function of vote counting. Denote by TV C = r = f(α) =∑K
k=1 1{pk<α}. It can be shown that T rOP = α = f−1(r) = p(r). Al-

though rOP is closely connected to vote countint, it does not have the
undesirable powerless property as vote counting has (see section 4.2 in
Song and Tseng; 2013).

Table 6.1 shows four hypothetical genes to compare different p-value
combination methods. Gene A and B shows that Fisher, , AW, Stouf-
fer and minP detect markers that have small p-values in “one or more”
studies. Specifically, gene B has a very small p-value in only one study
and the four methods all detect it. (??discuss gene C and gene D??) The
result clearly shows the pros and cons of different hypothesis settings and
methods and indicate the different hypothesis settings behind the meth-
ods (??improve the table, add AW). See discussion of formal hypothesis
settings in Section 6.2.
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Table 6.1: Four hypothetical genes to compare different mea-analysis
methods and to illustrate the motivation of rOP (*: p-values smaller
than 0.05)

gene A gene B gene C gene D
Study 1 0.1 1E-20 0.25 0.15
Study 2 0.1 0.9 0.25 0.15
Study 3 0.1 0.9 0.25 0.15
Study 4 0.1 0.9 0.25 0.15
Study 5 0.1 0.9 0.25 0.9

Fisher (HSB) 0.01* 1E-15* 0.18 0.12
Stouffer (HSB) 0.002* 0.03* 0.07 0.10
minP (HSB) 0.41 5E-20* 0.76 0.56
maxP (HSA) 1E-5* 0.59 0.001* 0.59

rOP (r = 4) (HSr) 5E-4* 0.92 0.015* 0.002*

6.1.3 Simulation and power comparison of different
methods

Power comparison between FEM, REM and Fisher

Power comparison between Fisher, minP and AW

6.2 Hypothesis settings and statistical prop-
erties

6.2.1 Different hypothesis settings

Following the convention of Birnbaum (1954) and Li and Tseng (2011),
the hypothesis setting of different meta-analysis methods can be catego-
rized into two extreme situations:

HSA :

{
H0 :

K⋂
k=1

{θk = 0} versus HA :

K⋂
k=1

{θk 6= 0}

}

HSB :

{
H0 :

K⋂
k=1

{θk = 0} versus HA :

K⋃
k=1

{θk 6= 0}

}
.

In the first hypothesis setting (HSA), the testing will be rejected only
when the effect sizes of “all” studies are non-zero (e.g. gene A in Table
6.1). For the second hypothesis setting (HSB), it is rejected whenever



6.2 Hypothesis settings and statistical properties 9

“one or more” studies are non-zero (gene A-D in Table 6.1). Among
methods described in this Chapter, all evidence aggregation methods
(Fisher, AW, Stouffer and logit) and minP belong to HSB . The maxP
method and fix effects model belong to HSA. Random effects models does
not belong to HSA but is very close (since when the overall effect size is
non-zero, effect sizes of some studies may be zero due to random effects).
We note that HSB is identical to the a classical union-intersection test
(UIT) (Roy, 1953) butHSA is different from intersection-union test (IUT)
(Berger, 1982; Berger and Hsu, 1996). In IUT, the statistical hypothesis
is in complementary form between null and alternative hypothesis:

HSIUT :

{
H0 :

K⋃
k=1

{θk = 0} versus HA :

K⋂
k=1

{θk 6= 0}

}
.

According to Song and Tseng (2013a), intermediate hypothesis set-
tings in between HSA and HSB can be developed. Define HSr (1 ≤ r ≤
K) as

HSr :

{
H0 :

K⋂
k=1

{θk = 0} versus HA :

K∑
k=1

I{θk 6= 0} ≥ r

}

The rOP method is designed for HSr hypothesis setting. In Song and
Tseng (2013), the parameter r in rOP was restricted to [(K + 1)/2] ≤
r ≤ K so that rOP is considered as a relaxed (or robust) form of HSA.

Song and Tseng (2013b) have discovered that HSA and HSr can
be anti-conservative in genomic applications since the null hypothesis
assumes differential expression in zero study and it is not complement to
the alternative hypothesis (??explain more later??). For HSA, HSIUT is
a better hypothesis setting. For HSr, HSr′ below shoud be considered
instead:

HSr′ :

{
H0 :

K∑
k=1

I{θk 6= 0} < r versus HA :

K∑
k=1

I{θk 6= 0} ≥ r

}

They developed a semi-parametric Bayesian mixture model to accommo-
date the composite null hypothesis in HSIUT and HSr′ and provided a
Bayes factor for comparing two competing null and alternative hypothe-
ses for decision making.



10 Genomic meta-analysis and information integration

6.2.2 Statistical properties of the methods

Statistical power and admissibility

– Compare power between Fisher, minP and AW-Fisher When h=1, minP
is more powerful than Fisher. AW-Fisher is only slightly lower power than
minP. When h > 4, Fisher is much more powerful than minP. AW-Fisher
is again only slightly less powerful than Fisher. In both extremes, AW-
Fisher is always near the more powerful method.

Figure 6.1: Statistical power of Fisher, minP and AW under different
alternative hypotheses. EW: Fisher; AW: AW-Fisher. Figure comes from
Li and Tseng, 2011.

– No UMP test; Fisher, Stouffer, minP and AW-Fisher are all admis-
sible.

Performance of different meta-analysis methods are difficult to com-
pare as it relates to the hypothesis setting and underlying data distribu-
tions. For performance of different hypothesis testing methods, we often
ask two questions: (1) whether there exists a uniformly most powerful
(UMP) test, and (2) whether a method is admissible. For UMP test, one
is interested in whether there exists a best method that has better or
no less statistical power than any other method under all alternative hy-
pothesis scenarios. Birnbaum (1954, 1955??) has shown that no p-value
combination meta-analysis method is UMP under HSB even in the most
simplified situation. He then established general conditions for evalua-
tion different methods, including monotonicity and admissibility. A test
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Figure 6.2: Rejection regions of different meta-analysis methods when
combining two studies under Gaussian assumption. Figure comes from
Li and Tseng, 2011.

is considered admissible if it cannot be uniformly improved by any other
test. Consider a two-sample test of the mean of a Gaussian distribution
with known variance (see Section 5 of Li and Tseng 2011). It has been
shown that a combination method is admissible under the simplified situ-
ation if and only if the acceptance region is convex. Figure 6.2 shows that
Fisher, minP, Stouffer and AW are all admissible. The maxP method is
not admissible as it does not target on HSB .

Asymptotic properties

–Fisher is ABO when all studies have equal non-zero effect sizes. AW-
Fisher is ABO in a more general class (to be proved in Shaowu’s thesis).
Although Fishers method is not the most uniformly powerful, it does
exhibit good power for a wide range of conditions. It is also recognized
for its asymptotically Bahadur optimal (ABO) characteristic, when the
studies have the same effect size for alternative hypotheses [Littell and
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Folks (1971, 1973)].

– vote counting asymptotically powerless.

– rOP does not have the problem of vote couting.

6.2.3 Concordance of effect sizes

Most p-value combination methods combine two-sided p-values by default
when two-sample comparison is performed. Such a practice has a poten-
tial issue that the hypothesis may be rejected with positive effect size in
one study but negative in the other. To avoid this problem, Owen (2009)
and Pearson (1934) applied a one-sided test form of Fishers method to ad-
dress the possible discordance issue. Two Fisher scores are first obtained
from left and right one-sided p-values: SFisher;L = −2

∑K
k=1 log(p̃k) and

SFisher;R = −2
∑K
k=1 log(1 − p̃k), where p̃k is the left-sided p-value of

study k. The one-sided corrected Fisher score is defined as SFisher;C =
max(SFisher;L, SFisher;R). Similar modification can be applied to minP,
maxP and rOP as well (see Song and Tseng, 2013a). For Stouffer’s
method, either one-sided p-value or a similar z-transformation of two-
sided p-value (T =

∑K
k=1 Φ−1(1 − pk/2) · {sign of effect size}) consider-

ing effect size direction have been widely used in GWAS meta-analysis
(Tseng et al., 2011).

6.3 Genomic meta-analysis

6.3.1 Microarray meta-analysis

The NAR review paper. Tseng et al. (2012)
combine effect size; combine p-value, combine ranks and directly merge

A few R packages are available to implement one or a few microar-
ray meta-analysis methods described above: MetaArray, metaMA, Gen-
eMeta. The MetaDE (Wang et al., 2012) package provides a comprehen-
sive coverage of ¿12 microarray meta-analysis methods.

6.3.2 GWAS meta-analysis

The NAR reivew paper. Begum et al. (2012).
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6.4 Issues and other types of genomic meta-
analysis

Inclusion/exclusion criteria and quality assessment

One of the most important obstacles to successful meta-analysis is dataset
quality (Eysenck, 1994). Inclusion of a poor quality or outlying study
in the information integration can greatly dilute information contained,
weaken statistical power or even distort final biological conclusions. In the
meta-analysis literature, many quality assessment protocols and systems
have been proposed. The procedure, however, still inevitably involve
expert opinion and human intervention. For microarray meta-analysis,
most existing studies either apply subjective expert opinion or ad hoc
quality control criteria (e.g. large enough sample size or good quality
array platform). A set of methodology called MetaQC (Kang et al.,
2011) has been developed for objective quality control and alleviate such
potential pitfalls in meta-analysis. The method considers homogeneity
and reproducibility of combined studies and biological validation from
external pathway information.

Publication bias

Related reading:

� Larry V. Hedges and Ingram Olkin. Statistical Methods for Meta-
Analysis. 1985.

� Stouffer, S. A., Suchman, E. A , DeVinney, L.C., Star, S.A., Williams,
R.M. Jr (1949). Adjustment During Army Life. Princeton, NJ,
Princeton University Press.

� Fisher, R.A. (1925). Statistical Methods for Research Workers.
Oliver and Boyd (Edinburgh).

� Harris M. Cooper,Larry V. Hedges,Jeff C. Valentine. The handbook
of research synthesis and meta-analysis. 2009. 2nd Edition.

� Rudy Guerra, Darlene Renee Goldstein. Meta-analysis and com-
bining information in genetics and genomics. 2010. Chapman &
Hall/CRC.

� George C. Tseng, Debashis Ghosh and Eleanor Feingold. (2012)
Comprehensive literature review and statistical considerations for
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3799.
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� Song Chi and George C. Tseng. (2013b) Semi-parametric Bayesian
Approach for a Hierarchical Mixture Model in Genomic Meta-analysis.
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Gene and Enriched Pathway Detection in Microarray Meta-analysis.
Bioinformatics. 28:2534-2536.
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Exercise:



6.4 Issues and other types of genomic meta-analysis 15

1. (an exercise from pathway analysis)
(1) Simulate two groups x1, · · · , x50 ∼ N(0, 1) and y1, · · · , y50 ∼
N(1, 1). Designate the first 15 observations of group 1 and the
first 5 observations of group 2 (i.e. x1, · · · , x15, y1, · · · , y5) as in the
pathway and the other 80 observations as outside the pathway.
(2) Write an R function (without using ”ks.test” function in R) to
perform KS-test for this simultated data set: (a) First calculate
the observated KS-statistics. (b) Perform permutation analysis for
B = 100, 000 times to generate null distribution of the KS-statistic
and derive the p-value.
(3) Apply the ”ks.test” function in R to derive the p-value and
compare the result.

2. Show that the selection weights wi = 1/vi is optimal in the sense
that the variance T̄ is minimized. Since T̄ is unbiased, such a
selection is optimal.

3. Prove the null distributions of Fisher’s method, maxP, minP and
rOP.


